DRI Memory Management

* Full strength manager wasn't required for traditional usage:
Quake3 and glxgears.

* Perceived to be difficult.
* Fundamental for modern desktops, offscreen rendering.

* Talked about for years, can be put off no longer.



Current behaviour

* Clients cooperate to avoid treading on each others
{extures.

* |[f one client needs more memory, it can eject other textures
without saving the contents.

* Some global information to help with decisions

* Easy implementation, better than nothing.



But...

 Cannot trust data to remain in texture memory.

* Two copies of textures — one in main memory, one on card.
* Slow texture uploads — update both copies.

* Can't use the blitter for CopyTexSublmage

* No EXT_fbo, pbuffers, private backbuffers...

* No fast VBOs, PBOs.

* Nasty hacks - GLX_MESA_allocate_memory



What is needed to move on?

* Not just textures: Generalize textures to buffers.
* Guarantee that buffer contents be preserved.
e Still need to evict other clients buffers.

* Mec
e Mec
e Mec

nanism to force buffers to AGP/VRAM.
nanism to find out buffer offsets (plug into DMA cmds).

nanism to map/unmap buffers into client memory.



Semantics: Stolen from ARB vbo

* Always sensible to look at the closest ARB extension for
Inspiration.

* ARB_vbo is a generalized interface to multiple vendor's
memory manager, provides 80% of the semantics.

* We just implement the ARB semantics and add on the
missing driver-facing interfaces.



Buffers

* Buffers are identified by opaque integer handles.

e Sharing buffers should be straightforward.

* No apparent limitation (eg GL's limited sharing semantics)
* But — no mechanism for notifying other contexts of size
changes, etc. This may have to be handled at a higher
level.

 Key new call: ValidateBufferList() - specifies acceptable
memory pools for each buffer, triggers the upload.



Fences

* Fence encapsulates flushing and IRQ lowlevel
mechanisms.

* Need some smartness about when to emit flushes, which
sorts of flushes and when to emit IRQs.

* Buffer manager code mainly does this behind the scenes.
* Fallbacks, image uploads and map/unmap just work,
fences emitted and retired automatically.



Current Status

* Userspace prototype in 1915 driver. Memcpy based.

* Fast TexSublmage, CopyTexSublmage, CopyPixels.

* Fast Texlmage — further optimized by not waiting for idle
before replacing old image contents.

e EXT_fbo — soon.

* Other paths — as time allows.

* Thomas' TTM code for dynamic AGP manipulation.

* A clear path for a VRAM implementation.




Current Issues

» ValidateBuffer offsets only reliable while lock held.

* Problems stuffing DMA buffers — need to fire DMA before
releasing DRI lock. Can only really emit DMA with lock held.
e Solution: Fixup/relocation lists for DMA buffers. Emit DMA
without lock, grab lock, fixup, fire, unlock.

* Will prototype soon.

* Integration of Thomas' and my code remains to be done.



Next steps

* Implement the DMA fixup lists.

* \What about cliprects?

* Treat Command Buffers (DMA buf + fixups) as another
first-class object in memory manager, solidify their
semantics.

* Hand multiple DMA+patch buffers to the memory manager,
let it decide when best to fire them.

* The memory manager becomes a scheduler.



What about the DDX?

* Phase 1. Nothing happens.

* \VideoRAM specifies a fixed-size AGP pool, we manage the
rest of the aperture.

* Ongoing, this pool is an excellent place for pinned buffers —
cannot fragment the remaining address space.



DDX - Moving forward...

* Incrementally: Move stuff into the managed pool.
* Only keep pinned buffers in the fixed pool:
* Scanout buffers (the frontbuffer)
* Hardware cursor
* Also: video memory provided to client applications by
ARB_vbo map/unmap semantics.
* Everything else can be pushed into the memory manager.
* Ultimately, teach the memory manager about pinned
buffers as well.



What about VRAM?

* AGP dynamic mapping is a cool trick. What about VRAM?
* Need two things
* Data transfer path to/from VRAM
* Mechanism for allocating memory for evicted buffers in
the correct address space.
* Allocation may be challenging, but solvable.
* Also: new semantics for deciding when to copy between
AGP<->VRAM.



Optimizations, More future stuff

* Trial various replacement algorithms.

* Speculative upload/download.

* Speculative duplication — copy in both local and video
memory — on evict or update, just abandon the invalidated
copy.

* DMA prioritization.

* How to deal with multiple HW command queues?

e Efficient multiple client sync-to-vblank.

* Allocate backbuffer on first render command, deallocate on
swapbuffers — big savings for doublebuffered Ul's, GL-based
Ul's. Also: triple buffering for free.



Translation Table Maps for graphics memory management

Outline

* Background

* AGP mapping: Current situation
* What we want to do.

* What we can do.

* Translation table maps

Thomas Hellstrom, Tungsten Graphics



Translation Table Maps for graphics memory management

Background

* AGP space 1s currently limited
a) by the size of AGP aperture.
b) by the amount of AGP memory allocated at
DRI 1nitialisation.

* When space runs out, we need to evict “old” data.
Might be expensive to read back.

* Reading from AGP space 1s slow.

Thomas Hellstrom, Tungsten Graphics



Translation Table Maps for graphics memory management

Current situation

Virtual memory

~

Physical memory

S S—

Thomas Hellstrom, Tungsten Graphics

AGP Aperture




Translation Table Maps for graphics memory management

AGP space management

* No unused allocated AGP memory just sitting
around.

* Manage Aperture space.

* Fast binding / unbinding / eviction.

* Fast reading from AGP space.

Thomas Hellstrom, Tungsten Graphics



Translation Table Maps for graphics memory management

What we want to do

irtual memor
Virtual memo y User data (Textures etc.)

Virtual mapping

Memory managed

Physical memory AGP aperture

Thomas Hellstrom, Tungsten Graphi@emporary AGP binding



Translation Table Maps for graphics memory management

Problems and solutions

* All mappings of bound AGP memory needs to be
uncached.

* Memory really needs to be cacheable when
reading from it.

e Solution 1: Some TT implementations allow
cacheable pages. (PCIE, Intel GTT).

* Solution 2: Let DRM manage all mappings (User
virtual, kernel and AGP) of the pages. Change
caching policy when binding / unbinding -> TTM

Thomas Hellstrom, Tungsten Graphics



Translation Table Maps for graphics memory management

What we can do

irtual memor
Virtual memo y User data (Textures etc.)

’ \ Drm controlled

Backdoor map

Memory managed
AGP aperture

On demand
allocation

Physical memory

Thomas Hellstrom, Tungsten Graphi@emporary AGP binding



Translation Table Maps for graphics memory management

Translation Table Maps

* The user-space part of the memory manager
creates TTMs.

* Memory pages are automatically allocated when
used or bound.

* The user can request binding of any range of
pages from the ttm to the aperture. An aperture
space manager decides where they appear.

* If there 1s not enough space, the aperture space
manager evicts pages that are not currently used.

Thomas Hellstrom, Tungsten Graphics



Translation Table Maps for graphics memory management

Implications and limitations

e TTMs are not currently resizeable, which would
be nice for efficient reallocation.

* One TTM per buffer?

e If the TT can bind cached pages, TTMs are not
really needed. Just bind any user page.

* Anonymous TTM region.

* Shared TTM memory — Access rights?

Thomas Hellstrom, Tungsten Graphics



Translation Table Maps for graphics memory management

API

* The API (libdrm) provides provisions for

* Validating buffers — valid as long as DRM lock 1s
held. Unnecessary kernel calls avoided.

 Unbinding / evicting buftfers.

* Mapping / unmapping butfers — provide virtual
address for processor access.

* Destroying buffers.

e Fences.

Thomas Hellstrom, Tungsten Graphics



	xdevconf-memmgr.pdf
	xdevconf-ttm.pdf

